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ABSTRACT

This paper explores the rapidly evolving landscape of Artificial Intelligence (AI) as a

General Purpose Technology and its dual role in driving and sustaining innovation across various

domains. Central to this paper is the development of an AI Concept List and it’s application onto

research papers to generate several semantic networks. Numerous stages are involved, including

data acquisition and keyphrase extraction, extension through semantic similarities and validation

using regression analysis. The AI Concept List, created through a custom unsupervised machine

learning pipeline, consists of clustered keyphrases that encapsulate the broad field of AI, each

annotated with an importance weight to aid in-depth analysis in various research and industry

domains. The findings unveil a steady rise in the prevalence of AI concepts across certain research

domains. Subsequent discussions delve into potential implications, practical applications, and

inherent limitations alongside with future research directions and subsequent improvements. This

work proposes a novel methodology for measuring innovation, aiming to benefit the academic and

industrial communities by highlighting groundbreaking innovations and uncovering AI

applications in new domains.

Keywords: artificial intelligence, machine learning, enabling technologies, concept list, semantic

network, innovation, text analysis, natural language processing
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The AI Innovation Compass: Constructing Semantic Networks from AI Concepts to

Identify and Measure Technology Innovation

INTRODUCTION

Currently, we are witnessing a rapidly evolving landscape of technological advancements

in the field of Artificial Intelligence (AI). Such advancements open up a wide range of new and

innovative solutions which holds both opportunities as well as challenges for industry and

research domains alike (Benbya et al., 2021; Liu et al., 2018). While the impact of AI is

unquestionably powerful, it has a dual nature when it comes to innovation. On the one hand, there

is lots of potential to drive radical innovation in domains like medicine, environmental science or

the automotive industry (Wani et al., 2022; Lee et al., 2019; Liu et al., 2020; Badue et al., 2021),

but on the other hand, it poses challenges to sustaining such innovations by raising ethical

concerns, violating data privacy with huge data collections and eventually leading to

technological unemployment (Du and Xie, 2021; Makridakis, 2017).

When looking at the application of novel AI frameworks and technologies in certain

research domains, we find unconventional applications in subjects that traditionally relied on

conventional methods or algorithms. This leads to the assumption, that AI might be utilized as a

General Purpose Technology (GPT) in various fields and thus help solving problems that could

not be solved so far with traditional approaches (Klinger et al., 2021; Sarker, 2021). Finding such

events would require expert knowledge on the domain at hand as well as a vast amount of data in

good quality and time. Clearly, an instrument (supervised or unsupervised) to track technology

innovation without the need for expert knowledge would bridge the gap of detecting the use of AI

in different domains and open up a new way of measuring innovation across different areas.

This paper investigates the use of AI as a general purpose technology to track technology

innovation in different research domains. Therefore it utilizes a novel approach of creating an AI

Concept List and applying it to build semantic networks. Fundamental to this approach is the use

of concepts and conceptual spaces as introduced by Gärdenfors (2004, 2014). Due to recent

2



advancements in natural language processing (NLP) techniques (Yang et al., 2008; Lenz and

Winker, 2020), we introduce a quantitative analysis of semantic content in texts across extensive

document collections. Our methodology, detailed in subsequent sections, utilizes a custom

unsupervised machine learning pipeline for data acquisition, keyphrase extraction, and semantic

analysis. The findings reveal a comprehensive list of around 10k unique AI concepts, providing

new insights into the interdisciplinary applications of AI and its role in driving technological

innovation.

We first define the current state of research by providing an overview about AI as a general

purpose technology. We then transition to the state of current methods for text-based

measurements of technology innovation and the use of a suitable conceptual space for building a

semantic network. Next, we lay the foundation for the AI Concept List by defining different

information sources and data acquisition techniques. This step is crucial to the whole process as it

is followed by a standardized pipeline consisting of preprocessing, keyphrase extension through

similarity search as well as logistic regression for validation of these concepts. We then describe

our findings in the Results section, where we introduce a complete AI Concept List and put it to

use by building different semantic networks in various research domains. Lastly, we invoke a

discussion about the usage of such an AI Concept List and semantic networks as well as its

limitations and future research approaches.

ARTIFICIAL INTELLIGENCE AS A GENERAL PURPOSE TECHNOLOGY

Pioneers in fields as diverse as mathematics, psychology, and statistics initiated the genesis

of Artificial Intelligence back in the 1950s; they embarked on solving concrete problems with a

goal to emulate aspects of human intelligence (McCarthy et al., 2006). Since these early

endeavors, AI has not only transformed significantly but also consistently pushed boundaries: it

continually challenges what machines are capable of achieving. These efforts have ultimately laid

our current landscape - a rich selection comprised of tools, frameworks & systems across multiple

domains.
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Artificial Intelligence, clearly now transcending its initial academic boundaries, has

become a cornerstone in modern technological advancement and an essential element of our daily

lives throughout a diverse range of domains. The development of deep learning architectures,

such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), has been

pivotal in advancing capabilities in areas like image and speech recognition (LeCun et al., 2015).

More recently, advancements in transformer models, like GPT-3, have revolutionized natural

language processing (NLP) (Vaswani et al., 2017). This versatility in solving complex problems

across different fields is indicative of AI’s role as a GPT, as it’s not confined to singular or isolated

applications. Evidently, AI architectures are implemented seamlessly into various sectors,

revolutionizing our approaches to healthcare, transportation or environmental management.

However most notably among these is consumer technology. When looking at the recent progress

in generative AI, services like ChatGPT1 or Midjourney2 disrupt a wide range of domains by

automating many processes and generating new content in various formats on the go. More

applications range from subtle algorithms driving digital streaming recommendations to more

recognizable forms such as intelligent assistants that manage your smart home. The pervasive

adoption and profound integration of AI across diverse industries imply its classification as a

fundamental, rather than merely auxiliary, technology.

But the scope extends beyond this point: Artificial Intelligence distinguishes itself in the

research landscape with its dual role: as both a subject of basic research and a versatile tool

utilized across various domains. This discipline encompasses a diverse array of methodologies,

all carefully crafted to replicate and harness the cognitive abilities that parallel human intelligence

(Goodfellow et al., 2016; Russell and Norvig, 2016). This research delves into the intricacies of

machine learning, neural networks, and cognitive computing, continually advancing our

understanding and capabilities in AI. Indeed, AI is not just a theoretical concept: it is used in an

array of other domains as a powerful practical tool. In fields such as medicine, environmental

1A Service by OpenAI that provides an AI language model designed to provide information through natural language
conversation (openai.com/blog/chatgpt).

2A tool for creating AI-generated images from textual prompts (midjourney.com).
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science or engineering, we harness its power to analyze complex datasets with unparalleled

accuracy and speed: for example to model intricate systems or predict outcomes more reliably

than human capabilities alone could ever achieve. AI, as a tool in research, extends its application

far beyond mere data analysis: because of the rapid evolution of large language models (Vaswani

et al., 2017) and image diffusion (Rombach et al., 2022), a wide array of analysis tools are now

possible and interactive on a natural level. A recent paper exemplifies the swift advancement of

generative AI models in the domain of computational pathology. By integrating a foundational

vision encoder with a large language model, this AI assistant demonstrates remarkable proficiency

in diagnostic accuracy and response quality, highlighting the rapid evolution and potential of such

AI systems in specialized domains (Lu et al., 2023). This is just one application and it underlines

AI’s ubiquity in research, from computational pathology to climate modeling, exemplifies its

status as a GPT, a technology not just prevalent but foundational in various scientific domains.

By definition, a General Purpose Technology (GPT) is characterized by one or more

interrelated technologies with the potential of extensive applicability across various sectors as

well as technological dynamism (Bresnahan and Trajtenberg, 1995). This is evident in AI’s

integration into sectors as varied as healthcare, where it’s used for diagnostic accuracy, and in

environmental science, where it’s crucial for climate modeling. Overall, a GPT plays a vital role

as an "engine of growth", featuring matching innovations and novel implementations in

corresponding sectors and potentially leading to a rapid deployment. But the networked nature of

GPTs creates a risk of coordination failures, when rapid change makes their evolution hard to

predict (Helpman and Trajtenberg, 1994). This definition can be easily applied to the current

events and advancements in Artificial Intelligence, as it has unequivocally established itself as a

General Purpose Technology by permeating diverse sectors and fundamentally altering

operational paradigms. Its adaptability and transformative impact showcases its role in driving

forward a multitude of industries. AI’s unique capability to analyze, predict, and innovate has not

only streamlined processes but also opened avenues for new discoveries and solutions. Being a

GPT, we are able to find uses of AI as a method or tool in a diverse selection of scientific domains.
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As we transition from this comprehensive understanding of AI’s role as a ubiquitous driver

of progress, the focus now shifts to exploring how we can measure this technological innovation.

The upcoming section delves into novel methodologies, specifically examining how AI-driven

tools, like an AI conceptual space, can quantitatively assess the impact and evolution of innovation

in various research domains and AI’s capability to bridge the gaps of different applications.

TEXT-BASED MEASUREMENTS OF TECHNOLOGY INNOVATION: THE CASE OF
CONCEPTS

Technology Innovation can be measured using different methods and techniques.

Traditional quantitative metrics are for example the number of patent filings or R&D investments

(de Rassenfosse and van Pottelsberghe de la Potterie, 2009). More intricate ways include big data

approaches like metadata analysis of citation networks (Park et al., 2023) or economic figures

(Balland et al., 2020) to measure innovativeness and link it to outside factors. But with recent

advancements in the domain of natural language processing (NLP), text-based measurements are

increasingly applied alongside traditional methods to scientific papers and patents (Yang et al.,

2008; Lenz and Winker, 2020). They represent a significant shift from traditional quantitative

metrics and sometimes surpasses simple meta-analysis by capturing more details inside the actual

text.

Text-based approaches leverage the rich information embedded in text documents - such as

academic papers, patents, project reports, and even social media posts - to gauge innovation trends

and patterns. The key advantage of text-based analysis lies in its ability to capture the nuances and

contextual subtleties of technological advancements, often missed by conventional metrics. Paired

with meta information on the papers and patents like citations, venues, funding grants or even

code repositories, it enables a deeper understanding of the innovation landscape, including

emerging trends, technology diffusion, and the interconnectedness of different domains.

Recent literature suggests, that the development of conceptual spaces by utilizing word

embeddings and semantic similarity greatly improves natural language processing applications

(Mitchell and Dino, 2011; Aceves and Evans, 2022). While the groundwork for concepts is

6



already well defined (Gärdenfors, 2004, 2014), conceptual spaces are still evolving especially with

new applications of vector representations (Hannan et al., 2019). By spanning one or more

conceptual spaces around a specific technology of interest, a semantic network can be built up to

analyze metrics like topic appearances or co-occurrences. A handful of papers already try to

measure developments and innovation potential using state-of-the-art text-based methods. For

example, Giczy et al. (2022, 2021) take patent and paper datasets and examine the use of Artificial

Intelligence by employing different machine learning algorithms for classification problems.

Another approach is taken by Krenn and Zeilinger (2020) - they utilize a conceptual space in

quantum physics and employ a semantic network to identify recombining topics or forecast

emerging fields.

Generally, it becomes evident, that new technologies and novel approaches often emerge

from the combination of existing ideas and concepts. This phenomenon can be measured with a

variety of existing metrics (Pelletier and Wirtz, 2022; Arts et al., 2021). Artificial Intelligence

might serve as a prime example through its application in such diverse applications, combining

insights from different fields to create novel solutions.

In summarizing these insights, it becomes evident that assessing technological innovation

necessitates a comprehensive, multifaceted approach. Traditional metrics like patent filings and

R&D investments, while foundational, are significantly enhanced by text-based methodologies

and concept spaces, particularly in AI, offering a deeper, nuanced analysis. These methods exploit

textual documents to uncover often-missed details and relationships, enriching our understanding

of innovation trends and technology diffusion. The integration of AI as a General Purpose

Technology with text-based analysis forms a vital synergy, crucial for a thorough understanding of

AI’s transformative impact across various sectors. This approach is further developed through the

construction of an AI Concept List and subsequent semantic networks in the next sections,

instrumental for organizing AI terminologies and analyzing its evolving influence.
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DATA AND METHODS

In this section, we are going to explain, which data sources were used to build up an AI

Concept List, capable of capturing the current landscape of AI research. Furthermore, we

illustrate the pre-processing pipeline and consolidation steps towards the creation of valid

concepts. Lastly, we explain the validation steps used to verify these concepts and lay out our

findings towards the use and application of AI in different research fields.

Data Acquisition

With the objective to construct a strong and robust AI Concept List, the initial and perhaps

most crucial phase is the acquisition of relevant data and the subsequent processing of candidate

concepts. This step serves as the foundation on which the entire structure of our research is built.

Data acquisition, in this context, is not merely about gathering large quantities of information in

the AI domain. It is about carefully curating data that is both relevant and of high quality in the

first place, ensuring that the concept list and subsequent semantic networks are built on a robust

and representative substructure.

The first step constitutes a thorough collection of pre-existing AI concepts from classic

scientific literature. We manually create a list of AI concepts compiled from the indices of

well-known books that deal with topics of Artificial Intelligence and Machine Learning. In

addition to that, we acquire suitable AI concepts from the Computer Science Ontology (Salatino

et al., 2020) by selecting the high-level term artificial intelligence and traversing down in

its reference tree to capture all phrases that are related to it. This serves as a solid foundation of

well-known AI concepts.

But since this domain is exposed to an ever changing and fast paced environment, we need

to further extended this list by current and state-of-the-art methods and tasks taken from research

publications in the realm of AI. Simple categorizations of scientific papers into broad topics and

concepts of AI are already done by OpenAlex (Priem et al., 2022) or SemanticScholar (Kinney

et al., 2023) but they all rely on unsupervised classification algorithms and lack details when it
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comes to tasks, methods or datasets. Furthermore, they are not providing code repositories or

additional information. For this reason, we utilize the PapersWithCode3 dataset, a project

initialized by Meta AI Research4 and run by an active community of researchers and AI

enthusiasts. PapersWithCode provides an extensive collection of around 400k papers, all related to

AI. In addition to that, these papers are generally tagged with tasks, areas, methods, datasets, code

repositories and evaluation tables. All of this information is partly tagged by a state-of-the-art

extraction algorithm5, but mostly assigned by the community and constantly monitored. We

procure the current dataset from PapersWithCode through their data dump service and subsequent

API calls. Lastly, we generate keyphrases and 768-dimensional embedding vectors for abstracts

and descriptions. This step is further explained in the following section, since it utilizes part of the

pre-processing pipeline. All of the data acquisition scripts were written in python and designed to

be run periodically to ensure an up-to-date data source for further processing. An overview about

the written code and scripts can be found in the official GitHub Repository.

The results section and especially figure 7 provides a schematic illustration of the usage of

different data sources and subsequent processes. To extract valid AI concepts from method and

task descriptions for building the AI Concept List and creating the foundation for several semantic

networks, the next section details the execution of methodical pre-processing steps. This process

is crucial for refining the raw concept list into a format suitable for in-depth analysis and

subsequent application.

Pre-Processing Pipeline

Since all relevant documents and concepts are now available, a proper pre-processing

pipeline must be designed to generate high quality concept keyphrases from texts like abstracts or

descriptions. A resulting keyphrase is defined as one word (uni-gram) or a sequence of words

(n-gram) that appear successively in the text. Inspired by Shang et al. (2017), we define principal

criteria for a candidate phrase to be accepted as a quality keyphrase that describes a valid concept:

3paperswithcode.com
4ai.meta.com
5github.com/paperswithcode/sota-extractor
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1. Significance: Candidate keyphrases should be given a relevance score to assess their

significance to the whole text.

2. Semantic Network Quality: keyphrases should appear in their root form. Therefore

inflections from words must be stripped off to get a semantic network form of a word in

a phrase.

3. Descriptiveness: A keyphrase should be able to capture the topic or concept discussed

in the given document. Phrases like "paper describes" should be filtered out.

In accordance to these criteria, the pre-processing pipeline was designed as shown in figure 1.

FIGURE 1
Pre-Processing Pipeline

Text
Title, Abstract, etc.

YAKE
Keyphrase Extractor

Preprocessor

𝑙𝑒𝑚𝑚𝑎(𝑥)

𝑙𝑜𝑤𝑒𝑟 (𝑥)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑥) ≥ 3

𝑠𝑐𝑜𝑟𝑒(𝑥) ≤ 0.1

𝑁𝑜𝑢𝑛𝐶ℎ𝑢𝑛𝑘 (𝑥) = 𝑇𝑟𝑢𝑒

Keyphrase
neural network, etc.

𝑥

Notes: Standardized Pre-Processing Pipeline to create quality keyphrases from texts

First, the text is extracted from a certain document in the corpus (e.g. an abstract from a

paper or a description of a method). This text is already slightly processed as we need to convert it

into UTF-8 encoding and strip elements like hyperlinks and exotic characters. Next, we chose to

integrate the YAKE keyphrase extractor as it comes with a useful relevance score (Campos et al.,

2018). This relevance score captures the criterion of significance, since it assigns a numerical
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value to each candidate keyphrase extracted from the given text. It does so by multiplying the

bi-gram probability scores for each word of the calculated candidate keyphrase divided by the sum

of all bi-gram probability scores weighted by the candidate keyphrase frequency. In short, it

captures the distance of a given candidate keyphrase to the whole text and thus provides a local,

text-wide measurement of significance to a given candidate keyphrase. In our experiments, we

found that a YAKE score of 𝑆(𝑥) ≤ 0.1, with 𝑥 as the candidate keyphrase, delivers quality

keyphrases that are not generic and can be used for further processing.

Through YAKE, we are generating up to 15 quality keyphrases for each given text. To

further satisfy criteria two (Semantic Network Quality) and three (Descriptiveness), we employ a

custom-built preprocessor. Starting with the semantic network quality, candidate keyphrases are

brought into their canonical form through lemmatization. This process considers the context and

morphological analysis of words inside the candidate keyphrases, ensuring the root word (lemma)

is a valid linguistic entity. For example, the words "networks", "networking", "networked" will be

converted to their lemmatized form: "network". To further enhance the semantic network quality,

all keyphrases are converted into lowercase and very short terms (with less than 4 characters) are

dropped. After this process, the aforementioned YAKE relevance score is examined and candidate

keyphrases (𝑥) with a score 𝑆(𝑥) > 0.1 are dropped as well. Lastly, to comply with quality criteria

three (Descriptiveness), we utilize a noun chunk check. This function takes in the whole text and

generates noun chunks. Noun chunks contain at least one noun, may include adjectives,

determiners, or pronouns associated with the noun and do not extend beyond a simple or

compound noun phrase. Therefore, these noun chunks do not include verbs or clauses that aren’t

part of the noun phrase itself. The candidate keyphrases are checked against these noun chunks (of

course in their lemmatized form) and candidate phrases that are not also noun chunks are dropped.

All in all, this leaves us with a clean set of quality keyphrases for a given text and

constitutes the pipeline for all keyphrase extraction activities in this work.
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Extending the Concept List Through Similarity Search

As we are aiming to create a comprehensive AI Concept List and enrich this list with more

similar phrases taken from a large variety of scientific papers, a method has to be applied to find

semantic similarities. Several techniques are known to produce high quality results (Mihalcea

et al., 2006; Ali et al., 2018), we chose to opt for a rather new method that utilizes state of the art

word embeddings from large language models to represent the given keyphrases in a

768-dimensional vector space and calculate nearest neighbors through cosine similarities between

vectors to capture semantic similarity. An example can be seen in figure 2. Similar terms to the

original term "neural network" are positioned in proximity and exhibit a high degree of similarity

through the calculation of 𝑐𝑜𝑠(𝜃) between its vector and all other vectors from other candidate

keyphrases. This depiction is of course representative and does not capture the whole 768

dimensions.
FIGURE 2

Exemplary Similarity Search Mapping

𝑇𝑆𝑁𝐸1

𝑇𝑆𝑁𝐸2

𝑇𝑆𝑁𝐸3

neural network

neural net
neural network learning

artificial neural network-based

Notes: An exemplary gold-standard keyphrase "neural network" with its
closest semantic similar phrases reduced to three dimensions through TSNE
(Maaten and Hinton, 2008)

Similar to approaches used by Mitchell and Dino (2011) as well as Liu et al. (2023), we
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first take a set of concepts and embed these using the SentenceTransformers library (Reimers and

Gurevych, 2019) with a carefully chosen model named "SciNCL" (Ostendorff et al., 2022). This

embedding model was meticulously tuned to scientific language and allows for a good clustering

performance on scientific topics. It performed best as a transformers baseline in the SciRepEval

Benchmark (Singh et al., 2023). Next, we also embed all candidate keyphrases from a secondary

source (like PapersWithCode abstracts, see the results section for details). By utilizing

t-distributed stochastic neighbor embedding (TSNE) (Maaten and Hinton, 2008), we reduce the

768-dimensional embedding vectors of each keyphrase into two dimensional vectors for

visualization and clustering purposes. This is done using the Python library OpenTSNE6.

After obtaining two-dimensional vectors for each concept, we group them into various

topics, followed by the determination of centroids through the computation of mean embedding

vectors for all concepts within each cluster. This strategy is adept at mitigating the influence of

outlier cases during the neighbor identification process for each keyphrase, thereby enhancing the

resilience of the topic generation process. Regarding the selection of a clustering technique, the

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) method

is employed (McInnes and Healy, 2017; McInnes et al., 2017). HDBSCAN surpasses

conventional clustering algorithms in accuracy and consistency, facilitating the identification of

appropriate clustering centroids. Further, topic representations were generated using the

transformers7 library from Huggingface and as a model, we chose a reasonable flan-t5-xl

(Wei et al., 2022). Keyphrases of a given cluster were fed in alongside with a prompt: "Given the

following phrases, come up with a topic name that is specific and precise: [KEYWORDS]". With

𝑡 = 0.1, a very deterministic temperature for the language model, we generate precise and

descriptive topic representations.

The resulting topic centroids are taken as a starting point to extend the given concept list

with candidate keyphrases (an example of which can be seen in in figure 3. We employ a simple

k-nearest neighbor search algorithm onto the generated keyphrases obtained from the

6opentsne.readthedocs.io
7github.com/huggingface/transformers
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PapersWithCode abstracts to match a fixed number of suitable concepts from current literature to

the given topic centroids through semantic similarity by utilizing the NearestNeighbors

function from Scikit-learn (Pedregosa et al., 2011).

FIGURE 3
Similarity in Cluster Centroids

𝑥

𝑦

Graph Neural Network

GNN

Graph Representation Learning
Graph Labels

Embedding Model

Notes: An exemplary AI concept topic "Graph Neural Network" with its
closest semantic similar phrases reduced to two dimensions through TSNE.

Finally, we merge the initial AI Concept List with semantically similar nearest neighbors

to cluster centroids. This collection of quality phrases for AI concepts will now be put into a

validation stage which additionally provides valuable weights for future use cases.

Regression and Validation

As a crucial step in the creation of the AI Concept List and subsequent semantic networks,

all given concepts have to be validated against a test sample. This step will provide us with two

very valuable insights: Firstly, we are able to filter out concepts that are still too generic and thus

not beneficial in describing the domain of AI. Secondly, when choosing the right validation

method, we can derive certain coefficients from the model to assign numeric values to the given

concepts in order to mark their importance in the overall AI domain.

Initially, a suitable dataset has to be determined which acts as a negative sample to test the

concept list against. In a perfect setting, this would be a large selection of scientific papers that are

14



not dealing with the topics of Artificial Intelligence or Machine Learning at all and are free to

access. Therefore, we again utilize the extensive OpenAlex Database, which contains around 240

million scientific papers. To obtain a large sample of abstracts from papers with no ties to topics

in the field of AI, a locally hosted version of this extensive database is built up since the API

service from OpenAlex does not provide such large requests. We create a local version of the

OpenAlex database in a dockerized PostgreSQL instance. This allows us to execute several

queries and select specific papers with available abstracts that exclude concepts (like "Artificial

Intelligence" or "Machine Learning"). Naturally, after acquisition of this large text corpus, we

apply the pre-processing pipeline to generate quality keyphrases for that negative sample.

Next, we proceed to construct a phrase-document matrix. This process is facilitated by a

custom Python package we developed, which leverages a trie data structure for efficient keyphrase

search within lists or documents The underlying concept was outlined by (Brass, 2008) but the

package provides additional features like creating whole semantic networks given a valid list of

keyphrases and a selection of documents.

Initially, we categorize our document samples as either AI-related or Non-AI-related.

Each document is represented by a list of keyphrases extracted from it. Let 𝐷 be the set of all

documents and 𝑃 the set of all concept phrases in the AI Concept List. The Phrase Document

Matrix 𝑀 is defined as:

𝑀 =



𝑀11 𝑀12 · · · 𝑀1|𝑃 |

𝑀21 𝑀22 · · · 𝑀2|𝑃 |
...

...
. . .

...

𝑀|𝐷 |1 𝑀|𝐷 |2 · · · 𝑀|𝐷 | |𝑃 |


(1)

where 𝑀𝑖 𝑗 is the frequency of the 𝑗-th concept phrase in the 𝑖-th document. Each

document is labeled as AI-related or Non-AI-related, forming the label vector y:

y = [𝑦1, 𝑦2, . . . , 𝑦 |𝐷 |]⊤ (2)
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where 𝑦𝑖 = 1 indicates an AI-related document and 𝑦𝑖 = 0 otherwise.

As a validation method, it should be able to fit the data efficiently and provide interpretable

coefficients to each concept phrase so that we can derive weights to the concepts. We used a

logistic regression model in this setting since it provides a very fast and parallel runtime and can

output regression coefficients to each given AI concept. This is rather difficult when dealing with

machine learning classifiers. After careful consideration for the best hyper parameters to run the

logistic regression, the resulting coefficients as well as the whole regression model can be used to

validate the AI Concept List. The probability for the 𝑖-th document being AI-related is given by

the sigmoid function:

𝑃(𝑦𝑖 = 1|x𝑖) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥𝑖1+···+𝛽 |𝑃 |𝑥𝑖 |𝑃 | )
(3)

Here, x𝑖 represents the feature vector (extracted from the phrase-document matrix 𝑀) for

the 𝑖-th document, and 𝛽 𝑗 are the coefficients learned during the model training.

The logistic regression model is trained to minimize the negative log-likelihood, defined

as:

Cost(𝛽) = −
|𝐷 |∑︁
𝑖=1

[𝑦𝑖 log(𝑃(𝑦𝑖 = 1|x𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑃(𝑦𝑖 = 1|x𝑖))] (4)

The learned coefficients 𝛽 𝑗 indicate the importance of each AI concept in predicting the

classification of a given document. Therefore, we can normalize each positive coefficient and treat

it as a weighing factor.

To evaluate the applied logistic regression model, we employ k-Fold Cross-Validation as a

robust statistical technique, to assess performance and stability. Specifically, we utilize a 10-fold

cross-validation approach, effectively partitioning the dataset into ten distinct subsets. For each

fold, we train the model on nine subsets and validate it on the remaining subset. This method aids
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in mitigating overfitting and provides a more generalizable performance metric. The

Cross-Validation Accuracy (CV Accuracy) is given by the formula:

CV Accuracy =
1
𝑘

𝑘∑︁
𝑖=1

Accuracy𝑖 (5)

where 𝑘 is the number of folds (in our case, 10), and Accuracy𝑖 is the accuracy score for the 𝑖𝑡ℎ

fold. This formula calculates the average accuracy across all folds, providing a comprehensive

picture of the model’s performance.

The next section will now apply the given method on real-world data and lay out the

creation of the AI Semantic Network and its findings as well as its implications and limitations.

RESULTS

With the data acquisition, pre-processing pipeline, concept list extension and validation

steps laid out, we will now apply those steps onto real-world data and present an exemplary AI

Concept List as well as various Semantic Networks.

Initial Data Acquisition

As earlier mentioned, the AI Concept List consists of a mixture of different sources. First,

we collect concepts from book indices out of three well known scientific books in the domain of

Artificial Intelligence (Goodfellow et al., 2016; Murphy, 2022; Prince, 2023). To enrich these

rather theoretical concepts, we also gather concepts from the Computer Science Ontology as well

as from method and task names obtained from the PapersWithCode dataset. From these sources,

we derive 14.655 raw candidate concepts. After processing these concepts (lowercase, removal

of abbreviations, lemmatizing, etc.) and deduplicating the dataset, we end up with 9.070 unique

AI concepts. These concepts are then embedded and clustered as described in the Data and

Methods section. The resulting 25 clusters represent current tasks and topics of AI research in a

wide variety of applications ranging from computer vision to language processing. Figure 3

depicts a 2-D scatter plot of the clusters with their calculated centroid, which will become
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important in the next section.

FIGURE 4
2D Scatter Plot with clusters of initial AI Concepts

Notes: This figure depicts a 2-D scatter plot of the initial AI Concepts taken from book indices, PwC methods
and tasks as well as CSO topics. These concepts are clustered by their semantic similarity and represented
by a topic name.

Extending the AI Concept List

To enrich this list and therefore capture the current state of research as well as nuances in

specific sub-domains, we gather keyphrases from all abstracts of papers within the

PapersWithCode dataset utilizing our well-defined pre-processing pipeline. This results in
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562.066 unique keyphrases after preprocessing and deduplicating. Our implementation of

similarity search, as outlined in the Data and Methods section, incorporates abstract keyphrases as

a secondary source, while the initial AI concepts and their resulting clusters are the primary

source. We conduct a series of k-Nearest Neighbor calculations to AI concept cluster centroids by

gathering the 100 nearest neighboring candidate AI concept phrases to each cluster. We also

exclude the cluster of abbreviations (like gnn, rnn, etc.) since semantic similarity is not

interpretable here. This results in an extension to the initial AI Concept List of 2.507 new

keyphrases and leaves us with a comprehensive AI Concept List consisting of 11.577 phrases.

Figure 5 depicts the 2-D scatter plot of the given AI Concept centroids and the resulting nearest

neighbors around those points. Only a few of them are actually chosen, since they overlap strongly

with the initial AI concept list.

Regression and Validation

Finally, we employ our validation method with 1.219.378 negative keyphrase sample

documents obtained from a large sample of Non-AI related OpenAlex Publications as well as

415.941 positive keyphrase sample documents from the PapersWithCode dataset. As described

before, this results in a stacked phrase document matrix, where the negative and positive

keyphrases are grouped to their original document as 𝐷 (totalling 1.635.319 entries) and the AI

concept phrases as 𝑃 (totalling 11.577 entries). Because of the slightly imbalanced nature of this

dataset, we set the class weight to balanced in the scikit learn logistic regression model. We

calculate the frequency of each AI concept in each document keyphrase collection to populate the

matrix 𝑀 . The resulting dimensions of 𝑀 are 1.635.319 × 11.577, while the label vector 𝑦 has a

length of 1.635.319.

Fitting the logistic regression model and applying our 10-fold cross validation step, the

resulting accuracy converges at 87%. While this accuracy level indicates a reasonable degree of

correctness in predictions, it is important to note that the primary objective of employing logistic

regression in our study is not to achieve optimal classification accuracy per se. Instead, our focus

19



FIGURE 5
2D Scatter Plot with AI Concept Centroids and k-Nearest Neighbors

Notes: This figure depicts a 2-D scatter plot of the initial cluster centroids taken from the Data Acquisition
section. These AI clusters are extended by their nearest neighbor candidate AI concept phrases taken from
PwC abstracts. The position of cluster centroids is different to figure 4 due to the TSNE algorithm.

is on leveraging the regression coefficients to assign importance weights to the keyphrases. These

weights are instrumental in evaluating the significance and relevance of each phrase within the

broader context of AI research and innovation. The confusion matrix, which provides insight into

the model’s performance in terms of true positives, true negatives, false positives, and false

negatives, is presented in figure 6. This matrix reveals that the model correctly identified a
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significant number of true negatives as well as true positives, while the number of false positives

remained considerably lower. The number of false negatives indicates a specific area for

improvement.

FIGURE 6
Resulting confusion matrix of the logistic regression

Notes: This figure depicts the resulting confusion matrix from fitting label
vector 𝑦 to matrix 𝑀 in the logistic regression. Here, class 0 stands for
Non-AI samples, while 1 are AI samples.

Furthermore, the classification report in table 1 provides detailed insights into the model’s

performance. The precision, recall, and F1-score for each class highlight the model’s strengths

and weaknesses in classifying each category. The high precision in class 1 indicates a low false

positive rate, while the recall and F1-score suggest areas for potential improvement in model

sensitivity and the harmonic mean of precision and recall, respectively.

When mapping the regression coefficients to the AI keyphrases, we found that 4.551 out

of the 11.577 keyphrases had no regression coefficient and were therefore perfectly aligned with
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TABLE 1
Logistic Regression Classification Report for the AI
Concept List

Class Precision Recall F-score Support

0 0.87 0.99 0.92 244451
1 0.93 0.53 0.67 82613

accuracy 0.87 327064
macro avg 0.89 0.76 0.79 327064

weighted avg 0.88 0.87 0.86 327064
Notes: Classification Report generated on the test sam-
ple, which is 20% of the original sample.

the classification set (only appeared in the positive sample). Further, we found that 780

keyphrases were associated with a negative regression coefficient and thus not contributing to the

overall performance of the regression model. To improve our AI Concept List, we removed these

negative concepts, leaving us with 10.797 high-quality AI Concept Phrases. Next, we used a

k-Nearest Neighbor approach to find phrases lacking regression coefficients and assigned them

coefficients from their closest semantic matches for consistency. Lastly, we normalize these

regression coefficients to create a set of importance weights for each of the 10.797 AI Concepts.

Each step can be seen in an overview figure 7. A sample of the AI Concept List with

importance weights, regression coefficients as well as some graphical representations are provided

in Appendix A. The complete AI Concept List can be found on Huggingface for further

examination.

Creating Semantic Networks

With the refined AI Concept List now comprising numerous concept phrases with

importance weights, an interesting pattern emerges from the histogram in figure 8. It reveals that

only few keyphrases are assigned with very high weights, while the majority are assigned medium

to lower weights. This could suggest that the AI Concept List is focusing on a select group of

highly relevant phrases, possibly due to their frequent occurrence or strong association with

specific topics. The distribution of weights might also reflect the natural language use, where
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FIGURE 7
AI Concept List Pipeline
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Notes: Standardized Pipeline to create a weighted AI Concept List out of a diverse set of sources. See the
results section for details.

certain phrases are more central or pivotal to discussions than others. The concept list, therefore,

appears to be not uniformly distributed but rather concentrated around a few significant phrases,
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indicating a skewed importance towards certain terms within the dataset.

FIGURE 8
Histogram of AI keyphrase Importance Weights

Notes: This figure depicts a histogram showing the counts of AI concepts to their
respective importance weights.

With the finalized AI Concept List, we are now able to create individual semantic

networks on different scientific domains. We take the aforementioned OpenAlex Concepts, since

they provide a broad categorization of scientific papers into multi-level abstractions and gather a

sample of 100k scientific paper abstracts for each existing level 0 concepts (19 samples in total).

Each sample only contains english abstracts which are also fed through our Pre-Processing

Pipeline to gather high-quality texts. An overview can be seen in table 2.

The aforementioned custom-made Python Package "Wordtrie" is also designed to analyze

and map a corpus of documents to various AI Concepts. These documents are mapped to the AI

Concept List by constructing an occurrence matrix. This matrix, denoted as O, forms the basis of

each AI Semantic Network and is defined such that each row corresponds to a unique AI concept,
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TABLE 2
Overview of Domain Samples for the AI Semantic
Networks

Domain Concept Name 𝑁𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑁𝐴𝑣𝑔𝑊𝑜𝑟𝑑𝑠

Art 19.073 156, 96
Biology 100.000 231, 03
Business 100.000 144, 17
Chemistry 100.000 130, 21
Computer Science 100.000 149, 28
Economics 100.000 141, 94
Engineering 17.979 98, 83
Environmental Science 100.000 223, 92
Geology 582.167 218, 61
History 4.487 53, 42
Materials Sciences 100.000 150, 04
Mathematics 100.000 102, 31
Medicine 100.000 224, 94
Philosophy 39.817 188, 17
Physics 100.000 141, 92
Political Science 17.506 121, 40
Psychology 100.000 170, 92
Sociology 15.970 163, 68

Notes: Overview of all Samples taken from the
OpenAlex Database with their average abstract word
count. Some domains come with a smaller sample
size because of a lack of coverage in the OpenAlex
database.

and each column represents a document within the corpus. The entries of O, denoted as 𝑜𝑖 𝑗 , are

the counts of occurrences of the 𝑖𝑡ℎ AI concept within the 𝑗 𝑡ℎ document. The dimensions of O are

thus 𝑛 × 𝑚, where 𝑛 is the total number of AI concepts considered (10.797), and 𝑚 is the number

of documents in the corpus.

The occurrence matrix O constitutes an AI Semantic Network for each domain, which is

instrumental in visualizing and analyzing the interconnections between documents and AI

concepts. This network allows for the identification of prevalent themes and trends within the

domain of AI research. By treating AI concepts as nodes and their occurrences within documents

as edges, we can construct a graph that represents the semantic relationships inherent in the
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corpus. One of the primary applications of this semantic network is the temporal analysis of AI

research trends. By aggregating the occurrences of AI concepts across documents over time, we

can plot the number of documents containing AI concepts as a function of time. This yields

valuable insights into the evolution of interest and research focus within the field of AI.

In summary, we see an active prevalence of AI concepts across various research domains.

Figure 9 depicts the percentage of documents that have at least 3 occurrences of AI concepts

inside their titles and abstracts. Not surprisingly, domains like mathematics or computer science

show high engagements while other domains like art or history are not engaging with AI tools or

methods. Figure 10 highlights the expanding footprint of AI in certain research domains,

suggesting its application is becoming more widespread across disciplines such as Computer

Science, Environmental Sciences and Medicine, sometimes as a fundamental pillar, other times as

an important tool in specific contexts.

To put these results into perspective, we now transition into the discussion and future

research. We will explore, how these patterns reflect current trends and gaps in AI research and

what they reveal about the field’s evolution. Further, we will look at possible applications and

implications for both research and industry as well as some limitations to this approach.

DISCUSSION AND IMPLICATIONS

In this final section, we will engage in a comprehensive analysis of our findings,

particularly the distribution and usage of AI in research. We further shed light on possible

applications of various semantic networks as a measurement of innovation in certain domains and

a foundation for decision support systems in critical situations.

When looking at the AI Concept List and its resulting topics (figure 4), we can clearly see,

that the initial concept phrases capture a wide bandwidth of domains and tasks. Unsurprisingly,

we are able to find multiple topics that are covered by the PapersWithCode Dataset (e.g. "face

recognition") as well as foundational topics (e.g. "reinforcement learning") discussed in recent

books and papers. When tuning the clustering algorithm, more intricate topics can be found as
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FIGURE 9
Percentage of Documents with AI Concept per Domain
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Notes: Accumulated percentage of the occurrence of at least 3 AI concepts in different research domains.

well. The superiority of our approach is evident in the AI Concept Lists ability to accurately and

dynamically reflect the rapidly evolving landscape of AI research. Unlike earlier attempts, which

often relied on narrowly focused datasets (Baek et al., 2021; Giczy et al., 2022), meta information

(Park et al., 2023) or simpler text-mining methods like named entity recognition (Fleuren and

Alkema, 2015) or TF-IDF (Tseng et al., 2007), our methodology integrates a wider array of

sources and employs advanced text-based analytics. Further, thanks to a modular implementation,

new sources can be added easily. This ensures a more robust and holistic representation of the AI

field, encompassing emerging trends and niche areas that were previously underrepresented or

overlooked in academic discourse. In addition to that, we are also planning on incorporating more

features into our pipeline, as we transition to an extensive knowledge graph that extends beyond

the scope of the current AI Concept List (with code repositories, fulltext analysis, authors,
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FIGURE 10
Level 0 AI Concept occurrences in different research domains over time

Notes: This figure depicts the occurrence of AI concepts in different scientific papers associated with various
domains over time.

institutions, funding patterns, etc.).

When applying the AI Concept List to form semantic networks in certain research

domains, we identify a steady rise in the use of AI methods, tasks and theorems. The steady

increase in AI-related publications as seen in figure 10 mirrors significant technological

advancements, including the rise of deep learning and enhanced computational capacities, which

have made AI a more accessible and valuable resource for tackling complex research questions.

Moreover, the temporal growth pattern underscores periods of intensified activity, likely

influenced by technological breakthroughs and shifts in research funding towards AI. While AI’s

integration is varied and its impact differs across domains, its role in facilitating research and

offering novel solutions is increasingly recognized. This trend points to an increased interest in

AI’s applications and its potential to contribute to diverse fields of study, reflecting its role as a

valuable, albeit not universal, tool in the scientific research toolkit.
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These AI Semantic Networks serve as a starting point for many use cases. By tracking the

frequency and evolution of the usage of given concepts over time, researchers can gain insights

into emerging trends, shifts in focus areas and the evolution of thought within specific domains.

This tool could therefore help to identify emerging technologies or theories, providing valuable

quantitative measurements of how certain concepts gain traction in the academic community

either in a certain domain or in a broader perspective. It can also assist in literature review

processes, helping researchers to quickly find relevant works based on the prevalence of concept

phrases. Such a tool can also be employed to uncover new connections between different research

domains. Through the unconventional and fast paced evolution of AI methods and frameworks,

more and more researchers apply these methods to their subject and stumble across unexpected

results. With the use of semantic networks and an efficient keyphrase extraction tool, the

utilization of AI systems could be easily identified and connected to other domains. This could be

applied to virtually any area, as long as there is an access to high-quality textual information like

scientific papers, patents, press releases or websites.

In the industrial realm, the AI Concept List and subsequent semantic networks could be

pivotal as a component of decision support systems. When looking at recent radical innovations in

the domain of AI, decision-makers face ever increasing dilemmas as they have to navigate a

complex web of choices under growing pressure and accelerating timelines (Eisenhardt, 1989;

Kengpol and O’Brien, 2001; Duan et al., 2019). By utilizing the AI Concept List and analyzing

the prevalence as well as the importance weights of AI concepts, companies can gauge market

trends, technological advancements, and emerging consumer needs. This could be particularly

useful for product development, marketing strategies, and competitive analysis. For instance, a

company in the tech sector could use this instrument to stay informed of the latest developments in

AI, ensuring their products align with current trends and consumer expectations. Moreover, the

applications could extend to predictive analytics. By examining the trajectory of certain concepts

over time, organizations could predict future trends in technology and consumer behavior. This

predictive capability would be invaluable for strategic planning and long-term decision-making.
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LIMITATIONS AND FUTURE RESEARCH

The applications of such an AI Concept List and semantic network must be carefully

considered. Each step of the creation pipeline could be extended to incorporate more data,

produce more fine-grained results or generate higher-quality outputs. The Data Acquisition part is

a pivotal factor in digesting novel and recent developments in the realm of AI. The already quite

extensive selection of sources could be expanded with more papers, books or other documents to

capture even more aspects and gain deeper expert knowledge on certain parts or whole domains.

Key phase generation could be done on several levels (inspired by Shang et al. (2017)) to better

adhere to the keyphrase criteria. Additionally, the phase of Regression & Validation could be

optimized by implementing a streaming service that constantly updates and re-assesses the

regression coefficients as well as resulting weights for the given concepts. This would also benefit

the accuracy of our validation method. Lastly, when turning to the results, the selection of domain

samples can be improved. OpenAlex provides a comprehensive categorization into different

topics, but the selection of papers could be further filtered by venue, institution or other factors. It

is possible, that publications are mislabeled in individual cases.

On a more qualitative note, the AI Concept List and semantic network might be

instrumentalized in driving radical innovation. It is essential to consider how certain concepts

might highlight or overshadow emerging and disruptive technologies. There is no guarantee, that

each and every development in the domain of AI is reflected in these concepts or subsequently in

the semantic networks. The risk lies in the potential to reinforce existing knowledge and

paradigms, possibly at the cost of novel or radical ideas. Therefore, it is critical to explore ways to

calibrate the concept list to recognize and elevate groundbreaking concepts, ensuring it becomes a

tool that not only tracks but also fosters innovation. Another area of exploration could be the

development of filters or lenses within the semantic network that focus on identifying and

highlighting potentially disruptive technologies or theories, thereby aligning more closely with the

goal of driving radical innovation.

In conclusion, this paper presents a comprehensive AI Concept List and its application to
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form semantic networks in different research domains. It provides a novel tool consisting of

concept phrases that describe the domain of Artificial Intelligence. It surpasses traditional

methods of measuring technology innovation by incorporating a wide range of sources and

offering insights into emerging trends across various domains. Its utility is significant in both

academic research and industry, particularly when it comes to identifying and measuring radical

innovation. While this tool is promising, future enhancements are necessary to address its

limitations, such as refining the pipeline and ensuring it highlights disruptive innovations without

reinforcing existing paradigms. All in all, the AI Concept List’s role as a foundation for an

instrument to measure technological innovation is essential for further research in this field.
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APPENDIX A: SAMPLE OF THE AI CONCEPT LIST

In this appendix section, we present a sample excerpt of 30 entries from our AI Concept

List in table A1. We provide each concept phrase with its regression coefficient and importance

weight. The whole semantic network can be found in the corresponding GitHub Repository and

Huggingface Dataset.

TABLE A1
Sample excerpt of 30 lines from the AI Concept List

Concept Regression Coefficient Importance Weight

graph neural network 8.589677 1.000000
neural network 8.512252 0.990986
multi-task learning manner 6.824995 0.794558
normalizing flow 5.564290 0.647788
binary classification decision 5.254628 0.611738
point cloud analysis 4.991500 0.581104
smart city 4.749547 0.552937
open information extraction 4.673741 0.544111
fuzzy logic 4.551451 0.529875
graph convolutional 4.449122 0.517962
global black-box optimization 4.447448 0.517767
adversarial training process 4.266508 0.496702
crelu 3.890238 0.452897
preceding dialogue context 3.882794 0.452030
humanoid robot control 3.472160 0.404225
adversarial training mechanism 3.447482 0.401352
simultaneous mutual information 3.447327 0.401334
grammar induction 3.447202 0.401319
semantic relatedness 3.447172 0.401316
standard machine translation 3.446959 0.401291
k nearest neighbor method 3.156036 0.367422
slightly lower accuracy 3.112892 0.362399
agent based 3.111854 0.362278
typical weakly supervised 3.111457 0.362232
original feature map 2.840155 0.330647
channel attention 2.828382 0.329277
zero shot dst setting 2.677841 0.311751
important observation 2.537400 0.295401
invariant local feature 2.534656 0.295082
deep nonparametric clustering 2.534377 0.295049
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