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ABSTRACT

This paper explores the rapidly evolving landscape of Artificial Intelligence (Al) as a
General Purpose Technology and its dual role in driving and sustaining innovation across various
domains. Central to this paper is the development of an AI Concept List and it’s application onto
research papers to generate several semantic networks. Numerous stages are involved, including
data acquisition and keyphrase extraction, extension through semantic similarities and validation
using regression analysis. The AI Concept List, created through a custom unsupervised machine
learning pipeline, consists of clustered keyphrases that encapsulate the broad field of Al, each
annotated with an importance weight to aid in-depth analysis in various research and industry
domains. The findings unveil a steady rise in the prevalence of Al concepts across certain research
domains. Subsequent discussions delve into potential implications, practical applications, and
inherent limitations alongside with future research directions and subsequent improvements. This
work proposes a novel methodology for measuring innovation, aiming to benefit the academic and
industrial communities by highlighting groundbreaking innovations and uncovering Al

applications in new domains.
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The AI Innovation Compass: Constructing Semantic Networks from AI Concepts to

Identify and Measure Technology Innovation

INTRODUCTION

Currently, we are witnessing a rapidly evolving landscape of technological advancements
in the field of Artificial Intelligence (AI). Such advancements open up a wide range of new and
innovative solutions which holds both opportunities as well as challenges for industry and
research domains alike (Benbya et al., 2021; Liu et al., 2018). While the impact of Al is
unquestionably powerful, it has a dual nature when it comes to innovation. On the one hand, there
is lots of potential to drive radical innovation in domains like medicine, environmental science or
the automotive industry (Wani et al., 2022; Lee et al., 2019; Liu et al., 2020; Badue et al., 2021),
but on the other hand, it poses challenges to sustaining such innovations by raising ethical
concerns, violating data privacy with huge data collections and eventually leading to
technological unemployment (Du and Xie, 2021; Makridakis, 2017).

When looking at the application of novel Al frameworks and technologies in certain
research domains, we find unconventional applications in subjects that traditionally relied on
conventional methods or algorithms. This leads to the assumption, that AI might be utilized as a
General Purpose Technology (GPT) in various fields and thus help solving problems that could
not be solved so far with traditional approaches (Klinger et al., 2021; Sarker, 2021). Finding such
events would require expert knowledge on the domain at hand as well as a vast amount of data in
good quality and time. Clearly, an instrument (supervised or unsupervised) to track technology
innovation without the need for expert knowledge would bridge the gap of detecting the use of Al
in different domains and open up a new way of measuring innovation across different areas.

This paper investigates the use of Al as a general purpose technology to track technology
innovation in different research domains. Therefore it utilizes a novel approach of creating an Al
Concept List and applying it to build semantic networks. Fundamental to this approach is the use

of concepts and conceptual spaces as introduced by Girdenfors (2004, 2014). Due to recent



advancements in natural language processing (NLP) techniques (Yang et al., 2008; Lenz and
Winker, 2020), we introduce a quantitative analysis of semantic content in texts across extensive
document collections. Our methodology, detailed in subsequent sections, utilizes a custom
unsupervised machine learning pipeline for data acquisition, keyphrase extraction, and semantic
analysis. The findings reveal a comprehensive list of around 10k unique Al concepts, providing
new insights into the interdisciplinary applications of Al and its role in driving technological
innovation.

We first define the current state of research by providing an overview about Al as a general
purpose technology. We then transition to the state of current methods for text-based
measurements of technology innovation and the use of a suitable conceptual space for building a
semantic network. Next, we lay the foundation for the AI Concept List by defining different
information sources and data acquisition techniques. This step is crucial to the whole process as it
is followed by a standardized pipeline consisting of preprocessing, keyphrase extension through
similarity search as well as logistic regression for validation of these concepts. We then describe
our findings in the Results section, where we introduce a complete Al Concept List and put it to
use by building different semantic networks in various research domains. Lastly, we invoke a
discussion about the usage of such an Al Concept List and semantic networks as well as its

limitations and future research approaches.

ARTIFICIAL INTELLIGENCE AS A GENERAL PURPOSE TECHNOLOGY

Pioneers in fields as diverse as mathematics, psychology, and statistics initiated the genesis
of Artificial Intelligence back in the 1950s; they embarked on solving concrete problems with a
goal to emulate aspects of human intelligence (McCarthy et al., 2006). Since these early
endeavors, Al has not only transformed significantly but also consistently pushed boundaries: it
continually challenges what machines are capable of achieving. These efforts have ultimately laid
our current landscape - a rich selection comprised of tools, frameworks & systems across multiple

domains.



Artificial Intelligence, clearly now transcending its initial academic boundaries, has
become a cornerstone in modern technological advancement and an essential element of our daily
lives throughout a diverse range of domains. The development of deep learning architectures,
such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), has been
pivotal in advancing capabilities in areas like image and speech recognition (LeCun et al., 2015).
More recently, advancements in transformer models, like GPT-3, have revolutionized natural
language processing (NLP) (Vaswani et al., 2017). This versatility in solving complex problems
across different fields is indicative of AI’s role as a GPT, as it’s not confined to singular or isolated
applications. Evidently, Al architectures are implemented seamlessly into various sectors,
revolutionizing our approaches to healthcare, transportation or environmental management.
However most notably among these is consumer technology. When looking at the recent progress
in generative Al services like ChatGPT! or Midjourney? disrupt a wide range of domains by
automating many processes and generating new content in various formats on the go. More
applications range from subtle algorithms driving digital streaming recommendations to more
recognizable forms such as intelligent assistants that manage your smart home. The pervasive
adoption and profound integration of Al across diverse industries imply its classification as a
fundamental, rather than merely auxiliary, technology.

But the scope extends beyond this point: Artificial Intelligence distinguishes itself in the
research landscape with its dual role: as both a subject of basic research and a versatile tool
utilized across various domains. This discipline encompasses a diverse array of methodologies,
all carefully crafted to replicate and harness the cognitive abilities that parallel human intelligence
(Goodfellow et al., 2016; Russell and Norvig, 2016). This research delves into the intricacies of
machine learning, neural networks, and cognitive computing, continually advancing our
understanding and capabilities in Al. Indeed, Al is not just a theoretical concept: it is used in an

array of other domains as a powerful practical tool. In fields such as medicine, environmental
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science or engineering, we harness its power to analyze complex datasets with unparalleled
accuracy and speed: for example to model intricate systems or predict outcomes more reliably
than human capabilities alone could ever achieve. Al, as a tool in research, extends its application
far beyond mere data analysis: because of the rapid evolution of large language models (Vaswani
et al., 2017) and image diffusion (Rombach et al., 2022), a wide array of analysis tools are now
possible and interactive on a natural level. A recent paper exemplifies the swift advancement of
generative Al models in the domain of computational pathology. By integrating a foundational
vision encoder with a large language model, this Al assistant demonstrates remarkable proficiency
in diagnostic accuracy and response quality, highlighting the rapid evolution and potential of such
Al systems in specialized domains (Lu et al., 2023). This is just one application and it underlines
AI’s ubiquity in research, from computational pathology to climate modeling, exemplifies its
status as a GPT, a technology not just prevalent but foundational in various scientific domains.

By definition, a General Purpose Technology (GPT) is characterized by one or more
interrelated technologies with the potential of extensive applicability across various sectors as
well as technological dynamism (Bresnahan and Trajtenberg, 1995). This is evident in AI’s
integration into sectors as varied as healthcare, where it’s used for diagnostic accuracy, and in
environmental science, where it’s crucial for climate modeling. Overall, a GPT plays a vital role
as an "engine of growth", featuring matching innovations and novel implementations in
corresponding sectors and potentially leading to a rapid deployment. But the networked nature of
GPTs creates a risk of coordination failures, when rapid change makes their evolution hard to
predict (Helpman and Trajtenberg, 1994). This definition can be easily applied to the current
events and advancements in Artificial Intelligence, as it has unequivocally established itself as a
General Purpose Technology by permeating diverse sectors and fundamentally altering
operational paradigms. Its adaptability and transformative impact showcases its role in driving
forward a multitude of industries. AI’s unique capability to analyze, predict, and innovate has not
only streamlined processes but also opened avenues for new discoveries and solutions. Being a

GPT, we are able to find uses of Al as a method or tool in a diverse selection of scientific domains.



As we transition from this comprehensive understanding of AI’s role as a ubiquitous driver
of progress, the focus now shifts to exploring how we can measure this technological innovation.
The upcoming section delves into novel methodologies, specifically examining how Al-driven
tools, like an Al conceptual space, can quantitatively assess the impact and evolution of innovation
in various research domains and AI’s capability to bridge the gaps of different applications.

TEXT-BASED MEASUREMENTS OF TECHNOLOGY INNOVATION: THE CASE OF
CONCEPTS

Technology Innovation can be measured using different methods and techniques.
Traditional quantitative metrics are for example the number of patent filings or R&D investments
(de Rassenfosse and van Pottelsberghe de la Potterie, 2009). More intricate ways include big data
approaches like metadata analysis of citation networks (Park et al., 2023) or economic figures
(Balland et al., 2020) to measure innovativeness and link it to outside factors. But with recent
advancements in the domain of natural language processing (NLP), text-based measurements are
increasingly applied alongside traditional methods to scientific papers and patents (Yang et al.,
2008; Lenz and Winker, 2020). They represent a significant shift from traditional quantitative
metrics and sometimes surpasses simple meta-analysis by capturing more details inside the actual
text.

Text-based approaches leverage the rich information embedded in text documents - such as
academic papers, patents, project reports, and even social media posts - to gauge innovation trends
and patterns. The key advantage of text-based analysis lies in its ability to capture the nuances and
contextual subtleties of technological advancements, often missed by conventional metrics. Paired
with meta information on the papers and patents like citations, venues, funding grants or even
code repositories, it enables a deeper understanding of the innovation landscape, including
emerging trends, technology diffusion, and the interconnectedness of different domains.

Recent literature suggests, that the development of conceptual spaces by utilizing word
embeddings and semantic similarity greatly improves natural language processing applications

(Mitchell and Dino, 2011; Aceves and Evans, 2022). While the groundwork for concepts is



already well defined (Gérdenfors, 2004, 2014), conceptual spaces are still evolving especially with
new applications of vector representations (Hannan et al., 2019). By spanning one or more
conceptual spaces around a specific technology of interest, a semantic network can be built up to
analyze metrics like topic appearances or co-occurrences. A handful of papers already try to
measure developments and innovation potential using state-of-the-art text-based methods. For
example, Giczy et al. (2022, 2021) take patent and paper datasets and examine the use of Artificial
Intelligence by employing different machine learning algorithms for classification problems.
Another approach is taken by Krenn and Zeilinger (2020) - they utilize a conceptual space in
quantum physics and employ a semantic network to identify recombining topics or forecast
emerging fields.

Generally, it becomes evident, that new technologies and novel approaches often emerge
from the combination of existing ideas and concepts. This phenomenon can be measured with a
variety of existing metrics (Pelletier and Wirtz, 2022; Arts et al., 2021). Artificial Intelligence
might serve as a prime example through its application in such diverse applications, combining
insights from different fields to create novel solutions.

In summarizing these insights, it becomes evident that assessing technological innovation
necessitates a comprehensive, multifaceted approach. Traditional metrics like patent filings and
R&D investments, while foundational, are significantly enhanced by text-based methodologies
and concept spaces, particularly in Al, offering a deeper, nuanced analysis. These methods exploit
textual documents to uncover often-missed details and relationships, enriching our understanding
of innovation trends and technology diffusion. The integration of Al as a General Purpose
Technology with text-based analysis forms a vital synergy, crucial for a thorough understanding of
AT’s transformative impact across various sectors. This approach is further developed through the
construction of an Al Concept List and subsequent semantic networks in the next sections,

instrumental for organizing Al terminologies and analyzing its evolving influence.



DATA AND METHODS

In this section, we are going to explain, which data sources were used to build up an Al
Concept List, capable of capturing the current landscape of Al research. Furthermore, we
illustrate the pre-processing pipeline and consolidation steps towards the creation of valid
concepts. Lastly, we explain the validation steps used to verify these concepts and lay out our

findings towards the use and application of Al in different research fields.

Data Acquisition

With the objective to construct a strong and robust Al Concept List, the initial and perhaps
most crucial phase is the acquisition of relevant data and the subsequent processing of candidate
concepts. This step serves as the foundation on which the entire structure of our research is built.
Data acquisition, in this context, is not merely about gathering large quantities of information in
the Al domain. It is about carefully curating data that is both relevant and of high quality in the
first place, ensuring that the concept list and subsequent semantic networks are built on a robust
and representative substructure.

The first step constitutes a thorough collection of pre-existing Al concepts from classic
scientific literature. We manually create a list of Al concepts compiled from the indices of
well-known books that deal with topics of Artificial Intelligence and Machine Learning. In
addition to that, we acquire suitable Al concepts from the Computer Science Ontology (Salatino
et al., 2020) by selecting the high-level term artificial intelligence and traversing down in
its reference tree to capture all phrases that are related to it. This serves as a solid foundation of
well-known Al concepts.

But since this domain is exposed to an ever changing and fast paced environment, we need
to further extended this list by current and state-of-the-art methods and tasks taken from research
publications in the realm of Al. Simple categorizations of scientific papers into broad topics and
concepts of Al are already done by OpenAlex (Priem et al., 2022) or SemanticScholar (Kinney

et al., 2023) but they all rely on unsupervised classification algorithms and lack details when it



comes to tasks, methods or datasets. Furthermore, they are not providing code repositories or
additional information. For this reason, we utilize the PapersWithCode? dataset, a project
initialized by Meta Al Research# and run by an active community of researchers and Al
enthusiasts. PapersWithCode provides an extensive collection of around 400k papers, all related to
Al In addition to that, these papers are generally tagged with tasks, areas, methods, datasets, code
repositories and evaluation tables. All of this information is partly tagged by a state-of-the-art
extraction algorithm3, but mostly assigned by the community and constantly monitored. We
procure the current dataset from PapersWithCode through their data dump service and subsequent
API calls. Lastly, we generate keyphrases and 768-dimensional embedding vectors for abstracts
and descriptions. This step is further explained in the following section, since it utilizes part of the
pre-processing pipeline. All of the data acquisition scripts were written in python and designed to
be run periodically to ensure an up-to-date data source for further processing. An overview about
the written code and scripts can be found in the official GitHub Repository.

The results section and especially figure 7 provides a schematic illustration of the usage of
different data sources and subsequent processes. To extract valid Al concepts from method and
task descriptions for building the AI Concept List and creating the foundation for several semantic
networks, the next section details the execution of methodical pre-processing steps. This process
is crucial for refining the raw concept list into a format suitable for in-depth analysis and

subsequent application.

Pre-Processing Pipeline

Since all relevant documents and concepts are now available, a proper pre-processing
pipeline must be designed to generate high quality concept keyphrases from texts like abstracts or
descriptions. A resulting keyphrase is defined as one word (uni-gram) or a sequence of words
(n-gram) that appear successively in the text. Inspired by Shang et al. (2017), we define principal

criteria for a candidate phrase to be accepted as a quality keyphrase that describes a valid concept:

3paperswithcode.com
4ai.meta.com
Sgithub.com/paperswithcode/sota-extractor
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1. Significance: Candidate keyphrases should be given a relevance score to assess their
significance to the whole text.

2. Semantic Network Quality: keyphrases should appear in their root form. Therefore
inflections from words must be stripped off to get a semantic network form of a word in
a phrase.

3. Descriptiveness: A keyphrase should be able to capture the topic or concept discussed
in the given document. Phrases like "paper describes" should be filtered out.

In accordance to these criteria, the pre-processing pipeline was designed as shown in figure 1.

FIGURE 1
Pre-Processing Pipeline
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Notes: Standardized Pre-Processing Pipeline to create quality keyphrases from texts

First, the text is extracted from a certain document in the corpus (e.g. an abstract from a
paper or a description of a method). This text is already slightly processed as we need to convert it
into UTF-8 encoding and strip elements like hyperlinks and exotic characters. Next, we chose to
integrate the YAKE keyphrase extractor as it comes with a useful relevance score (Campos et al.,

2018). This relevance score captures the criterion of significance, since it assigns a numerical
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value to each candidate keyphrase extracted from the given text. It does so by multiplying the
bi-gram probability scores for each word of the calculated candidate keyphrase divided by the sum
of all bi-gram probability scores weighted by the candidate keyphrase frequency. In short, it
captures the distance of a given candidate keyphrase to the whole text and thus provides a local,
text-wide measurement of significance to a given candidate keyphrase. In our experiments, we
found that a YAKE score of S(x) < 0.1, with x as the candidate keyphrase, delivers quality
keyphrases that are not generic and can be used for further processing.

Through YAKE, we are generating up to 15 quality keyphrases for each given text. To
further satisfy criteria two (Semantic Network Quality) and three (Descriptiveness), we employ a
custom-built preprocessor. Starting with the semantic network quality, candidate keyphrases are
brought into their canonical form through lemmatization. This process considers the context and
morphological analysis of words inside the candidate keyphrases, ensuring the root word (lemma)
is a valid linguistic entity. For example, the words "networks", "networking", "networked" will be
converted to their lemmatized form: "network". To further enhance the semantic network quality,
all keyphrases are converted into lowercase and very short terms (with less than 4 characters) are
dropped. After this process, the aforementioned YAKE relevance score is examined and candidate
keyphrases (x) with a score S(x) > 0.1 are dropped as well. Lastly, to comply with quality criteria
three (Descriptiveness), we utilize a noun chunk check. This function takes in the whole text and
generates noun chunks. Noun chunks contain at least one noun, may include adjectives,
determiners, or pronouns associated with the noun and do not extend beyond a simple or
compound noun phrase. Therefore, these noun chunks do not include verbs or clauses that aren’t
part of the noun phrase itself. The candidate keyphrases are checked against these noun chunks (of
course in their lemmatized form) and candidate phrases that are not also noun chunks are dropped.

All in all, this leaves us with a clean set of quality keyphrases for a given text and

constitutes the pipeline for all keyphrase extraction activities in this work.
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Extending the Concept List Through Similarity Search

As we are aiming to create a comprehensive Al Concept List and enrich this list with more
similar phrases taken from a large variety of scientific papers, a method has to be applied to find
semantic similarities. Several techniques are known to produce high quality results (Mihalcea
et al., 2006; Ali et al., 2018), we chose to opt for a rather new method that utilizes state of the art
word embeddings from large language models to represent the given keyphrases in a
768-dimensional vector space and calculate nearest neighbors through cosine similarities between
vectors to capture semantic similarity. An example can be seen in figure 2. Similar terms to the
original term "neural network" are positioned in proximity and exhibit a high degree of similarity
through the calculation of cos(6) between its vector and all other vectors from other candidate
keyphrases. This depiction is of course representative and does not capture the whole 768

dimensions.

FIGURE 2
Exemplary Similarity Search Mapping
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Notes: An exemplary gold-standard keyphrase "neural network" with its
closest semantic similar phrases reduced to three dimensions through TSNE
(Maaten and Hinton, 2008)

Similar to approaches used by Mitchell and Dino (2011) as well as Liu et al. (2023), we
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first take a set of concepts and embed these using the SentenceTransformers library (Reimers and
Gurevych, 2019) with a carefully chosen model named "SciNCL" (Ostendorff et al., 2022). This
embedding model was meticulously tuned to scientific language and allows for a good clustering
performance on scientific topics. It performed best as a transformers baseline in the SciRepEval
Benchmark (Singh et al., 2023). Next, we also embed all candidate keyphrases from a secondary
source (like PapersWithCode abstracts, see the results section for details). By utilizing
t-distributed stochastic neighbor embedding (TSNE) (Maaten and Hinton, 2008), we reduce the
768-dimensional embedding vectors of each keyphrase into two dimensional vectors for
visualization and clustering purposes. This is done using the Python library OpenTSNE®.

After obtaining two-dimensional vectors for each concept, we group them into various
topics, followed by the determination of centroids through the computation of mean embedding
vectors for all concepts within each cluster. This strategy is adept at mitigating the influence of
outlier cases during the neighbor identification process for each keyphrase, thereby enhancing the
resilience of the topic generation process. Regarding the selection of a clustering technique, the
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) method
is employed (McInnes and Healy, 2017; Mclnnes et al., 2017). HDBSCAN surpasses
conventional clustering algorithms in accuracy and consistency, facilitating the identification of
appropriate clustering centroids. Further, topic representations were generated using the
transformers’ library from Huggingface and as a model, we chose a reasonable flan-t5-x1
(Wei et al., 2022). Keyphrases of a given cluster were fed in alongside with a prompt: "Given the
following phrases, come up with a topic name that is specific and precise: [KEYWORDS]". With
t = 0.1, a very deterministic temperature for the language model, we generate precise and
descriptive topic representations.

The resulting topic centroids are taken as a starting point to extend the given concept list
with candidate keyphrases (an example of which can be seen in in figure 3. We employ a simple

k-nearest neighbor search algorithm onto the generated keyphrases obtained from the

Sopentsne.readthedocs.io
7github.com/huggingface/transformers
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PapersWithCode abstracts to match a fixed number of suitable concepts from current literature to
the given topic centroids through semantic similarity by utilizing the NearestNeighbors

function from Scikit-learn (Pedregosa et al., 2011).

FIGURE 3
Similarity in Cluster Centroids
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Notes: An exemplary Al concept topic "Graph Neural Network" with its
closest semantic similar phrases reduced to two dimensions through TSNE.

Finally, we merge the initial AI Concept List with semantically similar nearest neighbors
to cluster centroids. This collection of quality phrases for Al concepts will now be put into a

validation stage which additionally provides valuable weights for future use cases.

Regression and Validation

As a crucial step in the creation of the Al Concept List and subsequent semantic networks,
all given concepts have to be validated against a test sample. This step will provide us with two
very valuable insights: Firstly, we are able to filter out concepts that are still too generic and thus
not beneficial in describing the domain of Al. Secondly, when choosing the right validation
method, we can derive certain coefficients from the model to assign numeric values to the given
concepts in order to mark their importance in the overall Al domain.

Initially, a suitable dataset has to be determined which acts as a negative sample to test the

concept list against. In a perfect setting, this would be a large selection of scientific papers that are
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not dealing with the topics of Artificial Intelligence or Machine Learning at all and are free to
access. Therefore, we again utilize the extensive OpenAlex Database, which contains around 240
million scientific papers. To obtain a large sample of abstracts from papers with no ties to topics
in the field of Al a locally hosted version of this extensive database is built up since the API
service from OpenAlex does not provide such large requests. We create a local version of the
OpenAlex database in a dockerized PostgreSQL instance. This allows us to execute several
queries and select specific papers with available abstracts that exclude concepts (like "Artificial
Intelligence" or "Machine Learning"). Naturally, after acquisition of this large text corpus, we
apply the pre-processing pipeline to generate quality keyphrases for that negative sample.

Next, we proceed to construct a phrase-document matrix. This process is facilitated by a
custom Python package we developed, which leverages a trie data structure for efficient keyphrase
search within lists or documents The underlying concept was outlined by (Brass, 2008) but the
package provides additional features like creating whole semantic networks given a valid list of
keyphrases and a selection of documents.

Initially, we categorize our document samples as either Al-related or Non-Al-related.
Each document is represented by a list of keyphrases extracted from it. Let D be the set of all

documents and P the set of all concept phrases in the Al Concept List. The Phrase Document

Matrix M is defined as:
—M11 My - M1|P|—
V= My My -+ Myp 0
[ Mipj Mipz-++ Mipjjp),

where M;; is the frequency of the j-th concept phrase in the i-th document. Each

document is labeled as Al-related or Non-Al-related, forming the label vector y:

y=[iy2-ypl’ (2)
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where y; = 1 indicates an Al-related document and y; = 0 otherwise.

As a validation method, it should be able to fit the data efficiently and provide interpretable
coeflicients to each concept phrase so that we can derive weights to the concepts. We used a
logistic regression model in this setting since it provides a very fast and parallel runtime and can
output regression coeflicients to each given Al concept. This is rather difficult when dealing with
machine learning classifiers. After careful consideration for the best hyper parameters to run the
logistic regression, the resulting coeflicients as well as the whole regression model can be used to
validate the Al Concept List. The probability for the i-th document being Al-related is given by

the sigmoid function:

1

PGi=1lx) = 1 + e~ BotBrxir+-+B|p|xip|)

3)

Here, x; represents the feature vector (extracted from the phrase-document matrix M) for
the i-th document, and ; are the coefficients learned during the model training.
The logistic regression model is trained to minimize the negative log-likelihood, defined

as:

|D|

Cost(B) = = ) [yrlog(P(y: = 11%)) + (1 = y;) log(1 = P(y; = 1]x)))] @)
i=1

The learned coeflicients §; indicate the importance of each Al concept in predicting the
classification of a given document. Therefore, we can normalize each positive coeflicient and treat
it as a weighing factor.

To evaluate the applied logistic regression model, we employ k-Fold Cross-Validation as a
robust statistical technique, to assess performance and stability. Specifically, we utilize a 10-fold
cross-validation approach, effectively partitioning the dataset into ten distinct subsets. For each

fold, we train the model on nine subsets and validate it on the remaining subset. This method aids
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in mitigating overfitting and provides a more generalizable performance metric. The

Cross-Validation Accuracy (CV Accuracy) is given by the formula:

k
1
CV Accuracy = T Z Accuracy; 4)
i=1
where k is the number of folds (in our case, 10), and Accuracy; is the accuracy score for the i’"
fold. This formula calculates the average accuracy across all folds, providing a comprehensive
picture of the model’s performance.
The next section will now apply the given method on real-world data and lay out the

creation of the Al Semantic Network and its findings as well as its implications and limitations.

RESULTS

With the data acquisition, pre-processing pipeline, concept list extension and validation
steps laid out, we will now apply those steps onto real-world data and present an exemplary Al

Concept List as well as various Semantic Networks.

Initial Data Acquisition

As earlier mentioned, the Al Concept List consists of a mixture of different sources. First,
we collect concepts from book indices out of three well known scientific books in the domain of
Artificial Intelligence (Goodfellow et al., 2016; Murphy, 2022; Prince, 2023). To enrich these
rather theoretical concepts, we also gather concepts from the Computer Science Ontology as well
as from method and task names obtained from the PapersWithCode dataset. From these sources,
we derive 14.655 raw candidate concepts. After processing these concepts (lowercase, removal
of abbreviations, lemmatizing, etc.) and deduplicating the dataset, we end up with 9.070 unique
Al concepts. These concepts are then embedded and clustered as described in the Data and
Methods section. The resulting 25 clusters represent current tasks and topics of Al research in a
wide variety of applications ranging from computer vision to language processing. Figure 3

depicts a 2-D scatter plot of the clusters with their calculated centroid, which will become
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important in the next section.

FIGURE 4
2D Scatter Plot with clusters of initial AI Concepts
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Notes: This figure depicts a 2-D scatter plot of the initial Al Concepts taken from book indices, PwC methods

and tasks as well as CSO topics. These concepts are clustered by their semantic similarity and represented
by a topic name.

Extending the AI Concept List

To enrich this list and therefore capture the current state of research as well as nuances in
specific sub-domains, we gather keyphrases from all abstracts of papers within the

PapersWithCode dataset utilizing our well-defined pre-processing pipeline. This results in
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562.066 unique keyphrases after preprocessing and deduplicating. Our implementation of
similarity search, as outlined in the Data and Methods section, incorporates abstract keyphrases as
a secondary source, while the initial Al concepts and their resulting clusters are the primary
source. We conduct a series of k-Nearest Neighbor calculations to Al concept cluster centroids by
gathering the 100 nearest neighboring candidate Al concept phrases to each cluster. We also
exclude the cluster of abbreviations (like gnn, rnn, etc.) since semantic similarity is not
interpretable here. This results in an extension to the initial AI Concept List of 2. 507 new
keyphrases and leaves us with a comprehensive AI Concept List consisting of 11.577 phrases.
Figure 5 depicts the 2-D scatter plot of the given AI Concept centroids and the resulting nearest
neighbors around those points. Only a few of them are actually chosen, since they overlap strongly

with the initial Al concept list.

Regression and Validation

Finally, we employ our validation method with 1.219.378 negative keyphrase sample
documents obtained from a large sample of Non-Al related OpenAlex Publications as well as
415.941 positive keyphrase sample documents from the PapersWithCode dataset. As described
before, this results in a stacked phrase document matrix, where the negative and positive
keyphrases are grouped to their original document as D (totalling 1.635.319 entries) and the Al
concept phrases as P (totalling 11.577 entries). Because of the slightly imbalanced nature of this
dataset, we set the class weight to balanced in the scikit learn logistic regression model. We
calculate the frequency of each Al concept in each document keyphrase collection to populate the
matrix M. The resulting dimensions of M are 1.635.319 x 11.577, while the label vector y has a
length of 1.635.319.

Fitting the logistic regression model and applying our 10-fold cross validation step, the
resulting accuracy converges at 87%. While this accuracy level indicates a reasonable degree of
correctness in predictions, it is important to note that the primary objective of employing logistic

regression in our study is not to achieve optimal classification accuracy per se. Instead, our focus

19



FIGURE 5
2D Scatter Plot with AI Concept Centroids and k-Nearest Neighbors
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Notes: This figure depicts a 2-D scatter plot of the initial cluster centroids taken from the Data Acquisition
section. These Al clusters are extended by their nearest neighbor candidate Al concept phrases taken from
PwC abstracts. The position of cluster centroids is different to figure 4 due to the TSNE algorithm.

is on leveraging the regression coeflicients to assign importance weights to the keyphrases. These
weights are instrumental in evaluating the significance and relevance of each phrase within the
broader context of Al research and innovation. The confusion matrix, which provides insight into
the model’s performance in terms of true positives, true negatives, false positives, and false

negatives, is presented in figure 6. This matrix reveals that the model correctly identified a
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significant number of true negatives as well as true positives, while the number of false positives
remained considerably lower. The number of false negatives indicates a specific area for

improvement.

FIGURE 6
Resulting confusion matrix of the logistic regression

o 240997 3454

True labels
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Notes: This figure depicts the resulting confusion matrix from fitting label
vector y to matrix M in the logistic regression. Here, class 0 stands for
Non-Al samples, while 1 are Al samples.

Furthermore, the classification report in table 1 provides detailed insights into the model’s
performance. The precision, recall, and F1-score for each class highlight the model’s strengths
and weaknesses in classifying each category. The high precision in class 1 indicates a low false
positive rate, while the recall and F1-score suggest areas for potential improvement in model
sensitivity and the harmonic mean of precision and recall, respectively.

When mapping the regression coefficients to the Al keyphrases, we found that 4.551 out

of the 11.577 keyphrases had no regression coeflicient and were therefore perfectly aligned with
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TABLE 1
Logistic Regression Classification Report for the Al

Concept List
Class ‘ Precision Recall F-score Support
0 0.87 0.99 0.92 244451
1 0.93 0.53 0.67 82613
accuracy 0.87 327064
macro avg 0.89 0.76 0.79 327064
weighted avg 0.88 0.87 0.86 327064

Notes: Classification Report generated on the test sam-

ple, which is 20% of the original sample.
the classification set (only appeared in the positive sample). Further, we found that 780
keyphrases were associated with a negative regression coefficient and thus not contributing to the
overall performance of the regression model. To improve our AI Concept List, we removed these
negative concepts, leaving us with 10.797 high-quality AI Concept Phrases. Next, we used a
k-Nearest Neighbor approach to find phrases lacking regression coeflicients and assigned them
coeflicients from their closest semantic matches for consistency. Lastly, we normalize these
regression coefficients to create a set of importance weights for each of the 10.797 Al Concepts.

Each step can be seen in an overview figure 7. A sample of the Al Concept List with

importance weights, regression coeflicients as well as some graphical representations are provided
in Appendix A. The complete Al Concept List can be found on Huggingface for further

examination.

Creating Semantic Networks

With the refined AI Concept List now comprising numerous concept phrases with
importance weights, an interesting pattern emerges from the histogram in figure 8. It reveals that
only few keyphrases are assigned with very high weights, while the majority are assigned medium
to lower weights. This could suggest that the AI Concept List is focusing on a select group of
highly relevant phrases, possibly due to their frequent occurrence or strong association with

specific topics. The distribution of weights might also reflect the natural language use, where
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FIGURE 7
AI Concept List Pipeline
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certain phrases are more central or pivotal to discussions than others. The concept list, therefore,

appears to be not uniformly distributed but rather concentrated around a few significant phrases,
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indicating a skewed importance towards certain terms within the dataset.

FIGURE 8
Histogram of AI keyphrase Importance Weights
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Notes: This figure depicts a histogram showing the counts of Al concepts to their
respective importance weights.

With the finalized AI Concept List, we are now able to create individual semantic
networks on different scientific domains. We take the aforementioned OpenAlex Concepts, since
they provide a broad categorization of scientific papers into multi-level abstractions and gather a
sample of 100k scientific paper abstracts for each existing level 0 concepts (19 samples in total).
Each sample only contains english abstracts which are also fed through our Pre-Processing
Pipeline to gather high-quality texts. An overview can be seen in table 2.

The aforementioned custom-made Python Package "Wordtrie" is also designed to analyze
and map a corpus of documents to various Al Concepts. These documents are mapped to the Al
Concept List by constructing an occurrence matrix. This matrix, denoted as O, forms the basis of

each Al Semantic Network and is defined such that each row corresponds to a unique Al concept,
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TABLE 2
Overview of Domain Samples for the AI Semantic
Networks

Domain Concept Name ‘ Npocuments N AvgWords

Art 19.073 156,96
Biology 100.000 231,03
Business 100.000 144,17
Chemistry 100.000 130,21
Computer Science 100.000 149,28
Economics 100.000 141,94
Engineering 17.979 98,83
Environmental Science | 100.000 223,92
Geology 582.167 218,61
History 4.487 53,42
Materials Sciences 100.000 150, 04
Mathematics 100.000 102,31
Medicine 100.000 224,94
Philosophy 39.817 188,17
Physics 100.000 141,92
Political Science 17.506 121,40
Psychology 100.000 170,92
Sociology 15.970 163, 68

Notes: Overview of all Samples taken from the
OpenAlex Database with their average abstract word
count. Some domains come with a smaller sample
size because of a lack of coverage in the OpenAlex
database.

and each column represents a document within the corpus. The entries of O, denoted as o;;, are
the counts of occurrences of the i AI concept within the j*# document. The dimensions of O are
thus n X m, where n is the total number of Al concepts considered (10.797), and m is the number
of documents in the corpus.

The occurrence matrix O constitutes an AI Semantic Network for each domain, which is
instrumental in visualizing and analyzing the interconnections between documents and Al
concepts. This network allows for the identification of prevalent themes and trends within the
domain of Al research. By treating Al concepts as nodes and their occurrences within documents

as edges, we can construct a graph that represents the semantic relationships inherent in the
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corpus. One of the primary applications of this semantic network is the temporal analysis of Al
research trends. By aggregating the occurrences of Al concepts across documents over time, we
can plot the number of documents containing Al concepts as a function of time. This yields
valuable insights into the evolution of interest and research focus within the field of Al

In summary, we see an active prevalence of Al concepts across various research domains.
Figure 9 depicts the percentage of documents that have at least 3 occurrences of Al concepts
inside their titles and abstracts. Not surprisingly, domains like mathematics or computer science
show high engagements while other domains like art or history are not engaging with Al tools or
methods. Figure 10 highlights the expanding footprint of Al in certain research domains,
suggesting its application is becoming more widespread across disciplines such as Computer
Science, Environmental Sciences and Medicine, sometimes as a fundamental pillar, other times as
an important tool in specific contexts.

To put these results into perspective, we now transition into the discussion and future
research. We will explore, how these patterns reflect current trends and gaps in Al research and
what they reveal about the field’s evolution. Further, we will look at possible applications and

implications for both research and industry as well as some limitations to this approach.

DISCUSSION AND IMPLICATIONS

In this final section, we will engage in a comprehensive analysis of our findings,
particularly the distribution and usage of Al in research. We further shed light on possible
applications of various semantic networks as a measurement of innovation in certain domains and
a foundation for decision support systems in critical situations.

When looking at the AI Concept List and its resulting topics (figure 4), we can clearly see,
that the initial concept phrases capture a wide bandwidth of domains and tasks. Unsurprisingly,
we are able to find multiple topics that are covered by the PapersWithCode Dataset (e.g. "face
recognition") as well as foundational topics (e.g. "reinforcement learning") discussed in recent

books and papers. When tuning the clustering algorithm, more intricate topics can be found as
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FIGURE 9
Percentage of Documents with AI Concept per Domain
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Notes: Accumulated percentage of the occurrence of at least 3 Al concepts in different research domains.

well. The superiority of our approach is evident in the AI Concept Lists ability to accurately and
dynamically reflect the rapidly evolving landscape of Al research. Unlike earlier attempts, which
often relied on narrowly focused datasets (Baek et al., 2021; Giczy et al., 2022), meta information
(Park et al., 2023) or simpler text-mining methods like named entity recognition (Fleuren and
Alkema, 2015) or TF-IDF (Tseng et al., 2007), our methodology integrates a wider array of
sources and employs advanced text-based analytics. Further, thanks to a modular implementation,
new sources can be added easily. This ensures a more robust and holistic representation of the Al
field, encompassing emerging trends and niche areas that were previously underrepresented or
overlooked in academic discourse. In addition to that, we are also planning on incorporating more
features into our pipeline, as we transition to an extensive knowledge graph that extends beyond

the scope of the current AI Concept List (with code repositories, fulltext analysis, authors,
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FIGURE 10
Level 0 AI Concept occurrences in different research domains over time
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institutions, funding patterns, etc.).

When applying the AI Concept List to form semantic networks in certain research
domains, we identify a steady rise in the use of Al methods, tasks and theorems. The steady
increase in Al-related publications as seen in figure 10 mirrors significant technological
advancements, including the rise of deep learning and enhanced computational capacities, which
have made Al a more accessible and valuable resource for tackling complex research questions.
Moreover, the temporal growth pattern underscores periods of intensified activity, likely
influenced by technological breakthroughs and shifts in research funding towards Al. While AI’s
integration is varied and its impact differs across domains, its role in facilitating research and
offering novel solutions is increasingly recognized. This trend points to an increased interest in
AT’s applications and its potential to contribute to diverse fields of study, reflecting its role as a

valuable, albeit not universal, tool in the scientific research toolkit.
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These Al Semantic Networks serve as a starting point for many use cases. By tracking the
frequency and evolution of the usage of given concepts over time, researchers can gain insights
into emerging trends, shifts in focus areas and the evolution of thought within specific domains.
This tool could therefore help to identify emerging technologies or theories, providing valuable
quantitative measurements of how certain concepts gain traction in the academic community
either in a certain domain or in a broader perspective. It can also assist in literature review
processes, helping researchers to quickly find relevant works based on the prevalence of concept
phrases. Such a tool can also be employed to uncover new connections between different research
domains. Through the unconventional and fast paced evolution of Al methods and frameworks,
more and more researchers apply these methods to their subject and stumble across unexpected
results. With the use of semantic networks and an efficient keyphrase extraction tool, the
utilization of Al systems could be easily identified and connected to other domains. This could be
applied to virtually any area, as long as there is an access to high-quality textual information like
scientific papers, patents, press releases or websites.

In the industrial realm, the AI Concept List and subsequent semantic networks could be
pivotal as a component of decision support systems. When looking at recent radical innovations in
the domain of Al, decision-makers face ever increasing dilemmas as they have to navigate a
complex web of choices under growing pressure and accelerating timelines (Eisenhardt, 1989;
Kengpol and O’Brien, 2001; Duan et al., 2019). By utilizing the AI Concept List and analyzing
the prevalence as well as the importance weights of Al concepts, companies can gauge market
trends, technological advancements, and emerging consumer needs. This could be particularly
useful for product development, marketing strategies, and competitive analysis. For instance, a
company in the tech sector could use this instrument to stay informed of the latest developments in
Al, ensuring their products align with current trends and consumer expectations. Moreover, the
applications could extend to predictive analytics. By examining the trajectory of certain concepts
over time, organizations could predict future trends in technology and consumer behavior. This

predictive capability would be invaluable for strategic planning and long-term decision-making.
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LIMITATIONS AND FUTURE RESEARCH

The applications of such an Al Concept List and semantic network must be carefully
considered. Each step of the creation pipeline could be extended to incorporate more data,
produce more fine-grained results or generate higher-quality outputs. The Data Acquisition part is
a pivotal factor in digesting novel and recent developments in the realm of Al. The already quite
extensive selection of sources could be expanded with more papers, books or other documents to
capture even more aspects and gain deeper expert knowledge on certain parts or whole domains.
Key phase generation could be done on several levels (inspired by Shang et al. (2017)) to better
adhere to the keyphrase criteria. Additionally, the phase of Regression & Validation could be
optimized by implementing a streaming service that constantly updates and re-assesses the
regression coefficients as well as resulting weights for the given concepts. This would also benefit
the accuracy of our validation method. Lastly, when turning to the results, the selection of domain
samples can be improved. OpenAlex provides a comprehensive categorization into different
topics, but the selection of papers could be further filtered by venue, institution or other factors. It
is possible, that publications are mislabeled in individual cases.

On a more qualitative note, the AI Concept List and semantic network might be
instrumentalized in driving radical innovation. It is essential to consider how certain concepts
might highlight or overshadow emerging and disruptive technologies. There is no guarantee, that
each and every development in the domain of Al is reflected in these concepts or subsequently in
the semantic networks. The risk lies in the potential to reinforce existing knowledge and
paradigms, possibly at the cost of novel or radical ideas. Therefore, it is critical to explore ways to
calibrate the concept list to recognize and elevate groundbreaking concepts, ensuring it becomes a
tool that not only tracks but also fosters innovation. Another area of exploration could be the
development of filters or lenses within the semantic network that focus on identifying and
highlighting potentially disruptive technologies or theories, thereby aligning more closely with the
goal of driving radical innovation.

In conclusion, this paper presents a comprehensive AI Concept List and its application to
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form semantic networks in different research domains. It provides a novel tool consisting of
concept phrases that describe the domain of Artificial Intelligence. It surpasses traditional
methods of measuring technology innovation by incorporating a wide range of sources and
offering insights into emerging trends across various domains. Its utility is significant in both
academic research and industry, particularly when it comes to identifying and measuring radical
innovation. While this tool is promising, future enhancements are necessary to address its
limitations, such as refining the pipeline and ensuring it highlights disruptive innovations without
reinforcing existing paradigms. All in all, the AI Concept List’s role as a foundation for an

instrument to measure technological innovation is essential for further research in this field.
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APPENDIX A: SAMPLE OF THE AI CONCEPT LIST

In this appendix section, we present a sample excerpt of 30 entries from our Al Concept
List in table A1. We provide each concept phrase with its regression coefficient and importance
weight. The whole semantic network can be found in the corresponding GitHub Repository and
Huggingface Dataset.

TABLE A1l
Sample excerpt of 30 lines from the AI Concept List

Concept Regression Coefficient Importance Weight
graph neural network 8.589677 1.000000
neural network 8.512252 0.990986
multi-task learning manner 6.824995 0.794558
normalizing flow 5.564290 0.647788
binary classification decision 5.254628 0.611738
point cloud analysis 4.991500 0.581104
smart city 4.749547 0.552937
open information extraction 4.673741 0.544111
fuzzy logic 4.551451 0.529875
graph convolutional 4.449122 0.517962
global black-box optimization 4.447448 0.517767
adversarial training process 4.266508 0.496702
crelu 3.890238 0.452897
preceding dialogue context 3.882794 0.452030
humanoid robot control 3.472160 0.404225
adversarial training mechanism 3.447482 0.401352
simultaneous mutual information 3.447327 0.401334
grammar induction 3.447202 0.401319
semantic relatedness 3.447172 0.401316
standard machine translation 3.446959 0.401291
k nearest neighbor method 3.156036 0.367422
slightly lower accuracy 3.112892 0.362399
agent based 3.111854 0.362278
typical weakly supervised 3.111457 0.362232
original feature map 2.840155 0.330647
channel attention 2.828382 0.329277
zero shot dst setting 2.677841 0.311751
important observation 2.537400 0.295401
invariant local feature 2.534656 0.295082
deep nonparametric clustering 2.534377 0.295049
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